

PHOTOVOLTAIK – SCHLÜSSEL ZUR ENERGIEWENDE FÜR JEDERMANN (HAUS, BALKON UND GARTEN)

Robert Immler, eza!-Energieberater

AGENDA

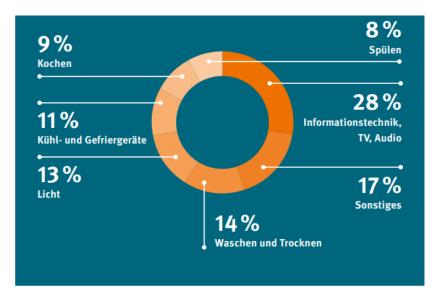
- Technische und Regulatorische Grundlagen PV
- Dimensionierung
- Eigenverbrauch
- Batteriespeicher
- ► E-Mobilität

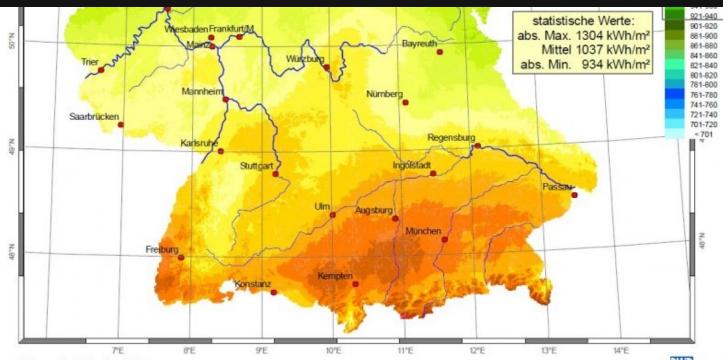
EINSPEISEVERGÜTUNG FÜR PV-STROM AUF GEBÄUDEN (CENT/KWH)

bis 10kWp	>10 bis 40kWp	>40 bis 100kWp			
Überschussanlagen					
8,1	7,0	5,7			
Volleinspeiseanlagen					
12,9	10,8	10,8			

STROMPREISENTWICKLUNG

STROMVERBRAUCH IM HAUSHALT




Abb. 6: Durchschnittliche Aufteilung des Stromverbrauchs im Haushalt.

HAUSHALTS-	STROMVERBRAUCH		
GRÖSSE	ohne elektr. erzeugtes Warmwasser	mit elektr. erzeugtem Warmwasser	
1 Person	2.300	2.500	
2 Personen	3.000	3.500	
3 Personen	3.500	4.500	
4 Personen	4.000	5.000	
5 Personen	5.000	6.100	

Abb. 7: Durchschnittlicher Stromverbrauch pro Jahr – je nach Haushaltsgröße.

SONNENEINSTRAHLUNG REGIONAL

Kassel

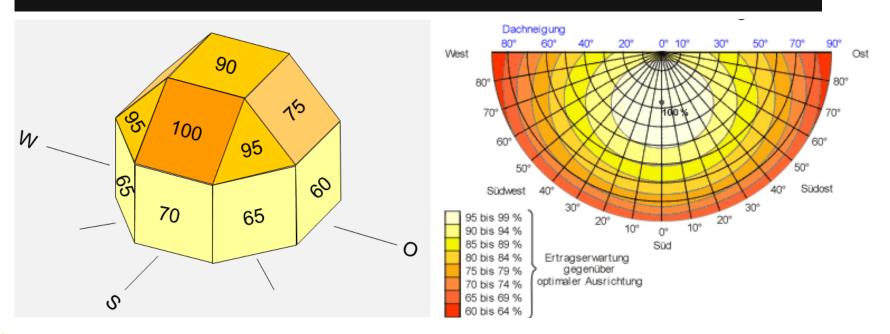
Leipzig

1161-1180

1141-1160

1121-1140 1101-1120

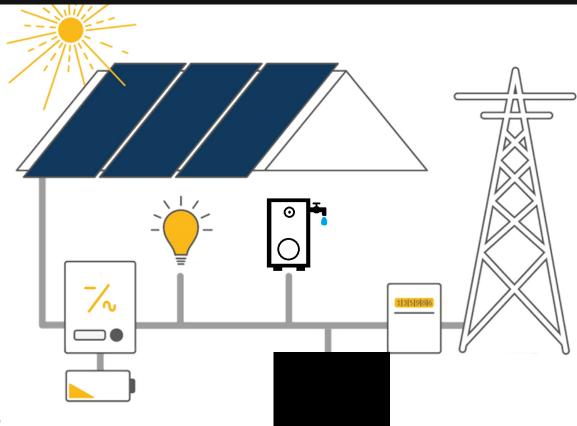
Görlitz


Wissenschaftliche Bearbeitung:

Düsseldott

DWD, Abt. Klima- und Umweltberatung, Pf 30 11 90, 20304 Hamburg Tel.: 040 / 66 90-19 22: eMail: klima.hamburg@dwd.de

OPTIMALE SOLARAUSRICHTUNG


- Optimale Erträge: 25-30° Neigung, Südausrichtung
- > 70% Ertrag an Süd-Balkon

DIMENSIONIERUNG EINER PV-ANLAGE

Abhängig von:

- Gebäude und Dach, Standort
- Strompreis
- Stromverbrauch
- Stromlastgang

ANLAGENSCHEMA PV MIT EIGENVERBRAUCH

KOMPONENTEN EINER PV-ANLAGE – PV-MODULE

Silizium-Solarzellen

- Monokristalline Solarzellen
- Polykristalline Solarzellen

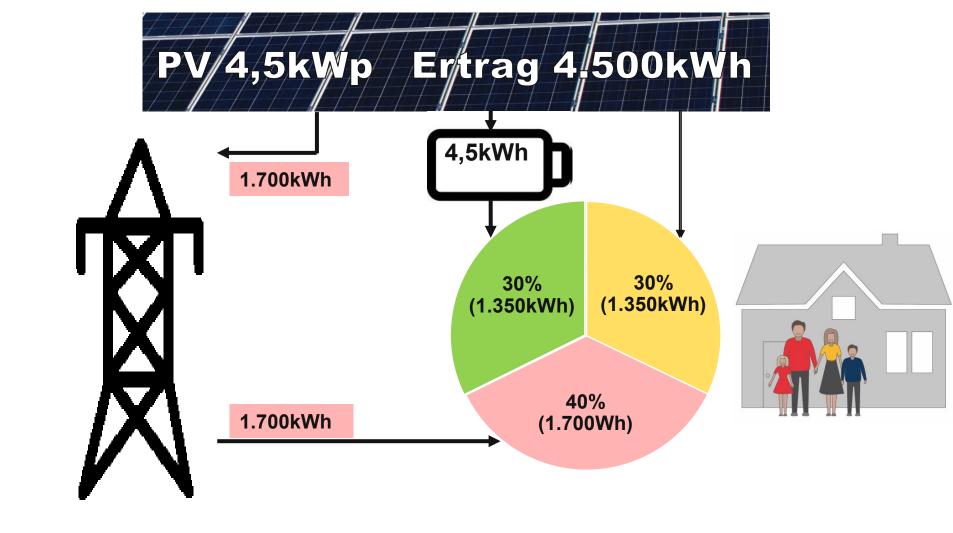
Dünnschicht-Solarzellen

Solarmodul mit 160 monokristallinen Solarzellen

Solarmodul mit 60 polykristallinen Solarzellen

Solarmodule mit Dünnschichtzellen

KOMPONENTEN EINER PV-ANLAGE - WECHSELRICHTER


- Auslegung nach Leistung der PV-Module
- MMP-Tracker
- Internetanbindung
- Fernwartung

KOMPONENTEN EINER PV-ANLAGE - STROMZÄHLER

 Zweirichtungszähler misst Strombezug und Überschusseinspeisung

DIMENSIONIERUNG VON BATTERIESPEICHERN BEI PV-ANLAGEN

- Nach Stromverbrauch
 Nutzbare Kapazität ≈ 1 kWh/1.000 kWh
- Nach Stromverbrauch pro Nacht Differenz am Stromzähler zwischen
 20:00 Uhr Abends bis 8:00 Uhr Morgens

PRIVATHAUS 6KWP

SÜDDACH, SÜDFASSADE, OST-WESTDACH

PV MIT SPEICHER

10kWp Photovoltaik 9,6kWh Speicher, 8,64 kWh Nutzkapazität

PV – BATTERIE - ELEKTROAUTO

- Solargenerator
- Wechselrichter
- Batteriespeicher

- Ladestation f
 ür das E-Auto
- Stromzähler für Bezug und Einspeisung
- Anschluss an das öffentliche Netz

Abb. 27: Photovoltaikanlage mit Batteriespeicher und Ladesäule zum Laden eines Elektroautos.

ELEKTROAUTO - NUTZERABHÄNGIG

- Durchschnittliche tägliche Fahrstrecke 50km
- Entspricht einem Stromverbrauch von etwa 8 kWh.
- 90 Prozent der Fahrten sind kürzer als 50 km.

Tipp: Wie weit fahre ich wie oft?

Führen Sie zwei Wochen lang ein Fahrtenbuch.

Für die meisten Verbraucher ist die Reichweite heutiger E-Autos ausreichend.

TANKSTELLE AUF DEM DACH

- Jährlicher Stromverbrauch bei 15.000km beträgt 2.500kWh
- PV auf Carport mit 20m² mit 2,5kWp mit 2500kWh/Jahr Energieertrag

TIPPS ZUM KAUF EINER WALLBOX

- 1. Ab 11 kW genehmigungspflichtig
- 2. Funktion zum PV Überschuss-Laden
- 3. integrierte DC-Fehlerstromerkennung
- 4. Niedriger Stand-by-Verbrauch
- 1-Phasig nur bis 4,6kW Ladeleistung möglich, 3-Phasig 11kW bzw. bis 22kW
- 6. Typ 2-Stecker weitestgehend Standard

PV UND E-AUTO – AUSLEGUNG SPEICHER

- Ca. 1kWh Speicherkapazität pro 1.000kWh Stromverbrauch
- Pendlerfahrzeug: 1-2,5kWh Speicher zusätzlich
- Speicher mit mindestens 4kW (1 oder 3-phasige Beladung des E-Autos)

ENERGIEMANAGER

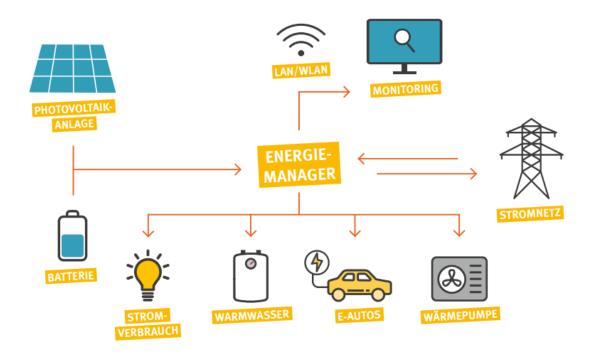


Abb. 34: Ein Energiemanager optimiert die Eigenversorgung mit Solarstrom. So kann zum Beispiel eine Ladestation automatisch eingeschaltet werden, wenn genug Strom vom Dach zum Laden des Elektroautos bereitsteht.

SOLAROPTIMIERTES LADEN

TREIBSTOFFKOSTEN - VERGLEICH

Treibstoff	Kosten pro 100 km	Preis pro Einheit [€/Liter; €/kWh]	Verbrauch
Benzin (Golf VII)	12,28 Euro	1,81	6,8
Diesel (Golf VII)	9,76 Euro	1,71	5,7
Netzstrom (eGolf)	6,32 Euro	0,4	15,8
Solarstrom (eGolf)	1,74 Euro	0,11	15,8

BIDIREKTIONALES LADEN

Freigegeben sind folgende Modelle:

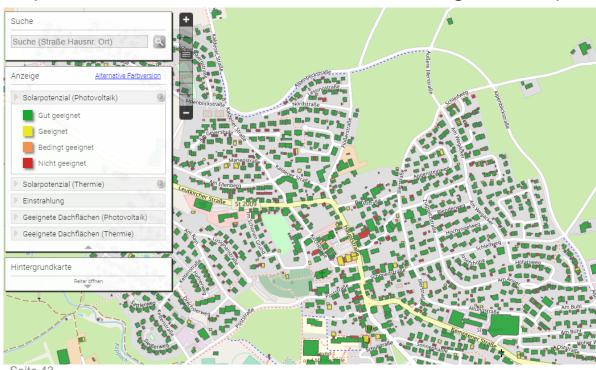
Modell	Stecker	AC / DC	Art
Nissan Leaf	CHAdeMO	DC	V2H / V2G (vorbereitet)
Nissan eNV200 ¹	CHAdeMO	DC	V2H / V2G (vorbereitet)
Mitsubishi ¹ Outlander / iMIEV	CHAdeMO	DC	V2H / V2G (vorbereitet)
<u>Hyundai Ioniq 5</u> / <u>6</u>	Schuko	AC (1-phasig)	V2L
Kia EV6 / Niro EV	Schuko	AC (1-phasig)	V2L
<u>MG 4</u> / <u>5</u> / <u>Marvel</u>	Schuko	AC (1-phasig)	V2L
Skoda Enyaq (mit 77 kWh)	CCS	DC	V2H / V2G (vorbereitet)
Volvo EX90	Schuko / Typ 2 / CCS	AC (1/3-phasig) / DC	V2L / V2H / V2G (vorbereitet)
<u>VW ID.3</u> , <u>ID.4</u> , <u>ID.5</u> , <u>ID Buzz</u> (mit 77 kWh)	CSS	DC	V2H / V2G (vorbereitet)
Polestar 3	Schuko / Typ 2 / CCS	AC (1/3-phasig) / DC	V2L / V2H / V2G (vorbereitet)

Kosten Wallbox für bidirektionales Laden ca. 3.000€

BIDIREKTIONALES LADEN

Neue Gesetze sind nötig

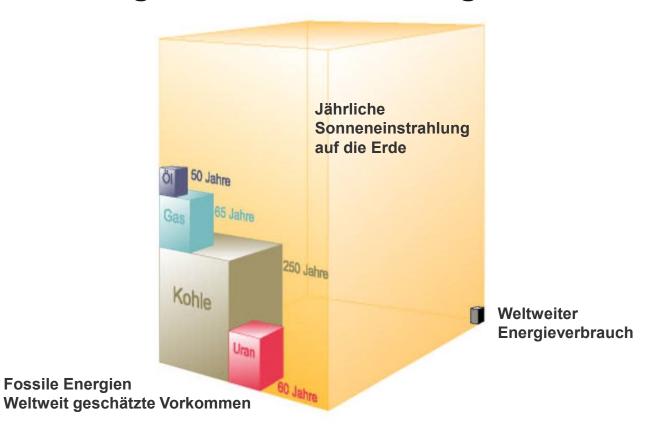
Der Gesetzgeber hat noch einiges zu tun. Aktuell sind E-Autos aus rechtlicher Sicht nur Pkw – und **keine Batteriespeicher**, für die es teils weitergehende rechtliche Vorgaben gibt. Eine weitere Frage: Wie soll der Strom, der wieder ins Netz eingespeist wird, versteuert werden? Dabei steckt der Teufel im Detail, schließlich könnte ein E-Auto-Besitzer sein Auto <u>steuerbegünstigt beim Arbeitgeber</u> laden und anschließend gegen Geld wieder ins Netz einspeisen


PV UND E-AUTO - TIPPS

- PV-Anlage groß dimensionieren (>10 kWp)
- Wallbox mit PV-Überschussladefunktion
- Speicher bei Pendlerfahrzeug größer wählen
- Nur mit Solar- oder Ökostrom ist das E-Auto umweltfreundlich
- Bidirektionales Laden ist noch Zukunftsmusik

SOLARPOTENZIALKATASTER

https://www.solare-stadt.de/landkreis-dillingen/Solarpotenzialkataster



Seite 43

Seite 4

Energievorkommen - Energiebedarf

FAZIT

- Solarstrom lohnt sich!
- Für den eigenen Geldbeutel und die Umwelt

NOCH FRAGEN?

Energie- und Umweltzentrum Allgäu 87435 Kempten (Allgäu) Telefon 0831 960286-0

www.eza-allgaeu.de info@eza-allgaeu.de

